Small-conductance calcium-activated K(+) channels 3 (SK3) regulate blastocyst hatching by control of intracellular calcium concentration.

نویسندگان

  • Yong-Chao Lu
  • Guo-Lian Ding
  • Jing Yang
  • Yan-Ling Zhang
  • Shuai Shi
  • Run-Ju Zhang
  • Dan Zhang
  • Jie-Xue Pan
  • Jian-Zhong Sheng
  • He-Feng Huang
چکیده

BACKGROUND The present study was designed to investigate the expression of small-conductance calcium-activated K(+) channels 3 (SK3) in preimplantation embryos and to explore their role in the underlying mechanism of blastocyst hatching. METHODS Human preimplantation embryos were donated by patients who achieved successful pregnancy with in vitro fertilization. Mouse preimplantation embryos in different stages were collected and cultured with or without siRNA cell injection. The expression of SK3 was examined by RT-PCR, quantitative real-time PCR, western blot and immunofluorescence. Functional expression of SK3 was investigated using the patch-clamp technique. [Ca(2+)]i was measured by fluorescent imaging. Embryos were cultured in vitro to investigate the effect of SK3 knockdown or apamin, an SK3 inhibitor, on blastocyst hatching and F-actin formation. RESULTS In human blastocysts, the level of SK3 expression was significantly lower in blastocysts that failed to hatch than in blastocysts that hatched successfully. In mouse embryos, SK3 mRNA and protein were not found in zygotes, but were detected from the 2-cell stage onward, with the highest levels observed in blastocysts. SK3 was predominately located in the trophectoderm cell membrane of expanded blastocysts. SK3 knockdown in trophectoderm cells not only suppressed the SK3 current, but also reduced [Ca(2+)]i elevation and membrane potential hyperpolarization induced by thapsigargin. Although the formation of expanded blastocysts was not affected, blastocyst hatching and F-actin formation were significantly inhibited after SK3 knockdown in trophectoderm cells. CONCLUSIONS SK3-mediated [Ca(2+)]i elevation and membrane potential hyperpolarization in trophectoderm cells are important for blastocyst hatching, and defects in SK3 expression may contribute to infertility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of SK3 channel as a new mediator of breast cancer cell migration.

Potassium channels have been involved in epithelial tumorigenesis but the role of small-conductance Ca(2+)-activated K(+) channels is unknown. We report here that small-conductance Ca(2+)-activated K(+) channels are expressed in a highly metastasizing mammary cancer cell line, MDA-MB-435s. Patch-clamp recordings showed typical small-conductance Ca(2+)-activated K(+) channel-mediated currents se...

متن کامل

Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses.

Glucose-stimulated insulin secretion is associated with transients of intracellular Ca(2+) concentration [Ca(2+)](i) in the pancreatic beta-cell. We identified the expression and function of specific small-conductance Ca(2+)-activated K(+) (SK) channel genes in insulin-secreting cells. The presence of mRNA for SK1, -2, -3, and -4 (intermediate-conductance Ca(2+)-activated K(+) 1 [IK1]) channels...

متن کامل

Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium

Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 mRNA expression in myometrium from pregnant and non-pregnant women. Myometrial biopsies were obtained fr...

متن کامل

The role and regulation of small conductance CA2+ activated K+ channel subtype 3 in myometrial contraction and placental development

Mechanisms that control the timing of labor have yet to be fully characterized. In a previous study (8), over-expression of small conductance calcium-activated K channel subtype 3 in transgenic mice, Kcnn3/Kcnn3 (also known as SK3), led to compromised parturition, which demonstrated the important role of KCNN3 in the delivery process. Based on these findings, we hypothesized that SK3 channel ex...

متن کامل

A functional role for small-conductance calcium-activated potassium channels in sensory pathways including nociceptive processes.

We investigated the role of small-conductance calcium-activated potassium (SK) and intermediate-conductance calcium-activated potassium channels in modulating sensory transmission from peripheral afferents into the rat spinal cord. Subunit-specific antibodies reveal high levels of SK3 immunoreactivity in laminas I, II, and III of the spinal cord. Among dorsal root ganglion neurons, both periphe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human reproduction

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2012